If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

  • A

    ${{{\vec v}_1}}$ is parallel to ${{{\vec v}_2}}$

  • B

    ${{{\vec v}_1} = {{\vec v}_2}}$

  • C

    $\left| {{{\vec v}_1}} \right| = \left| {{{\vec v}_2}} \right|$

  • D

    ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are mutually perpendicular

Similar Questions

Figure shows three vectors $p , q$ and $r$, where $C$ is the mid point of $A B$. Then, which of the following relation is correct?

Two vectors $\overrightarrow A $and $\overrightarrow B $lie in a plane, another vector $\overrightarrow C $lies outside this plane, then the resultant of these three vectors i.e.,$\overrightarrow A + \overrightarrow B + \overrightarrow C $

If $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, then

Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$

Two vectors $\vec A$ and $\vec B$ have magnitudes $2$ and $1$ respectively. If the angle between $\vec A$ and $\vec B$ is $60^o$, then which of the following vectors may be equal to $\frac{{\vec A}}{2} - \vec B$